

Wireless and Mobile Chae Y. Lee

Triangular cell Square cell Hexagonal cell Circle cell

Types of cells depends on the location of BSs Cell boundary: Equal power line

Why Hexagonal?

Wireless and Mobile Chae Y. Lee

Compactness increases

$$\bigtriangleup \rightarrow \Box \rightarrow \bigcirc \rightarrow \bigcirc$$

Each cell has same area: A=area/cell Worst case user is more adjacent to the BS Cell design needs to consider the path loss of the

worst case user

Radius of the worst case user

$$R_{T} = 0.87\sqrt{A}$$
$$R_{S} = 0.70\sqrt{A}$$
$$R_{H} = 0.62\sqrt{A}$$
$$R_{C} = 0.56\sqrt{A}$$

Worst case user from the center of \triangle is 30% more apart compared to \bigcirc

 $P_T/P_H = (0.62/0.87)^4 = -6dB$

Reuse patterns in Hexagonal cells

Wireless and Mobile Chae Y. Lee

N = valid reuse cluster size

= # of cells per valid reuse cluster

Not valid: the nearest interferer is same distanced as in N=1

Reuse patterns in Hexagonal cells

Wireless and Mobile Chae Y. Lee

How do you decide a certain number *N* is valid or not?

 $N = i^2 + j^2 + ij$, *i*, *j*: nonnegative integers Ni j

How do you find the nearest co-channel cell?

- 1. Move *i* cells along any chain of hexagons
- 2. Turn 60° counter clockwise and move j cells

Reuse Cluster Size and C/I

Wireless and Mobile Chae Y. Lee

- # of ch/cell = Total # of ch/N
- How do you decide *N* ?
 - Smallest N that meets the required C/I
 - It increases the # of channels that can be used at each cell
 - Small cluster (N=4)Big cluster (N=7)More ch/cellLess ch/cellWorse C/IBetter C/I

Reuse Cluster Size and C/I

Wireless and Mobile Chae Y. Lee

Co-channel Interference

Reuse Cluster Size and C/I

Wireless and Mobile Chae Y. Lee

$$\frac{C}{I} = \frac{1}{6} \left(\sqrt{3N} - 1\right)^4$$

In AMPS

N	C/I
1	< 1
3	≈ 3
4	≈ 6
7	$27 \cong 15 \text{ dB}$
9	51
12	$104 \cong 20 \text{ dB}$